Stuart Russell 和 Peter Norvig 随后发表了“人工智能:现代方法”,成为 AI 研究的主要教科书之一。 在该书中,他们探讨了 AI 的四个潜在目标或定义,按照理性以及思维与行动将 AI 与计算机系统区分开来:
人类方法:
像人类一样思考的系统像人类一样行动的系统
理想方法:
理性思考的系统理性行动的系统
艾伦·图灵的定义可归入“像人类一样行动的系统”类别。
以最简单的形式而言,人工智能是结合了计算机科学和强大数据集的领域,能够实现问题解决。 它还包括机器学习和深度学习等子领域,这些子领域经常与人工智能一起提及。 这些学科由 AI 算法组成,这些算法旨在创建基于输入数据进行预测或分类的专家系统。
目前,仍有许多围绕 AI 发展的炒作,市场上任何新技术的出现都会引发热议。 正如Gartner 的炒作周期中所指出的,包括自动驾驶汽车和个人助理在内的产品创新遵循:“创新的典型发展进程,从超高热情到幻想破灭期,最终了解创新在市场或领域中的相关性和作用”。正如 Lex Fridman 在其 2019 年的 MIT 讲座中所指出的那样,我们正处于泡沫式期望的颠峰,逐渐接近幻灭槽。
人工智能的类型 - 弱 AI 与强 AI
弱 AI 也称为狭义的 AI 或人工狭义智能 (ANI),是经过训练的 AI,专注于执行特定任务。 弱 AI 推动了目前我们周围的大部分 AI。“范围窄”可能是此类 AI 更准确的描述符,因为它其实并不弱,支持一些非常强大的应用,如 Apple 的 Siri、Amazon 的 Alexa 以及 IBM Watson 和自主车辆。
强 AI 由人工常规智能 (AGI) 和人工超级智能 (ASI) 组成。 人工常规智能 (AGI) 是 AI 的一种理论形式,机器拥有与人类等同的智能;它具有自我意识,能够解决问题、学习和规划未来。 人工超级智能 (ASI) 也称为超级智能,将超越人类大脑的智力和能力。 虽然强 AI 仍完全处于理论阶段,还没有实际应用的例子,但这并不意味着 AI 研究人员不在探索它的发展。 ASI 的最佳例子可能来自科幻小说,如 HAL、超人以及《2001 太空漫游》电影中的无赖电脑助手。